Examining Racial Bias in Predictive Analytic Tools to More Equitably Distribute Care to At-Risk Veterans

  • Augmented & Artificial Intelligence,
  • Health Equity
Project Status: In Progress

This project will develop a new Care Assessment Needs score that incorporates race & social determinants of health metrics & test how this score impacts the composition of veterans determined to be at-risk. This new algorithm can lead to more equitable distribution of Veteran's Health Administration resources & enrollment in programs.

In order to target care resources equitably and efficiently, the Veterans Health Administration (VA) has implemented novel predictive analytic tools in clinical care settings, including the Care Assessment Needs (CAN) score. Commonly used by VA clinicians nationwide, the CAN score is used to direct clinical programs and resources, including telehealth, palliative care, and home-based primary care, to high-risk veterans. However, recent studies have shown that other similar algorithms may mischaracterize and underestimate risk for vulnerable patient subgroups and do not routinely factor in race nor social determinants of health.

The growing concern is that algorithms like the CAN score could generate “algorithmically unfair” predictions that systematically mischaracterize risk for subgroups, particularly African Americans. Thus, this project will examine algorithmic unfairness in the VA CAN score and develop approaches to mitigate this unfairness within the existing CAN score its current metrics. This project will also develop a new CAN score that incorporates race and select social determinants of health metrics and test how this score impacts the composition of veterans determined to be at-risk.

Examining and reducing unfairness in models such as the VA CAN score has the potential to lead to more equitable distribution of VA resources and enrollment in VA programs. By factoring in race and social determinants of health, the CAN score can more accurately portray to clinicians whom may be at-risk and thus ensure that all veterans have fair access to needed programs.

VA Merit (R01-funded) Grant

Project Leads

  • Ravi Parikh


    Associate Director, PC3I & Director, Program in Augmented and Artificial Intelligence, PC3I

  • Amol Navathe

    MD, PhD

    Co-Director, Healthcare Transformation Institute

Project Team

  • Sumedha Chhatre

  • Kevin Jenkins

  • Kristin Linn

  • Matt Maciejewski

  • Helen Yan

Get Involved!

Become part of our impact, stay informed on our change agents’ latest innovations, and/or explore educational opportunities at the University of Pennsylvania.

Get Involved